

Physical Processes in the Tokamak Edge/Pedestal

B. Scott

Max Planck Institut für Plasmaphysik Boltzmannstr 2 D-85748 Garching, Germany

International ITER School, Hefei, Dec 2015

Profile Examples

L-mode

H-mode

tokamak edge pedestal distinctly

• scales – parameters

- steep gradient, $R/L_{\perp} > 30$, even find $L_{\perp}/R < \rho_s/L_{\perp}$
- electron transit frequencies comparable to turbulence, $c_s/L_\perp > V_e/qR$

• dynamics

- low frequency/beta \rightarrow magnetic stiffness \rightarrow reduced, gyrokinetic equations
- electromagnetic turbulence character $c_s/L_\perp > v_A/qR$

• equilibration

- neoclassical time scale separation is affected
- collisional relaxation in the regime of $L_{\perp}/R < \rho_s/L_{\perp} \sim \{20, 30\}^{-1}$

the scale ratio regime determines edge/pedestal dynamical character

space scales

• meaning of steep gradients:

```
profile scale L_{\perp} \ll toroidal major radius R
```

• field line pitch parameter in a conventional tokamak

$$q \sim 3$$

• parallel scale (field line connection length) is the largest

$$qR/L_{\perp} \sim 200$$

• the local rho-star is not smaller than the perp scale ratio

$$\rho_s/L_\perp \sim 1/30 \qquad L_\perp/R \sim 1/50$$

time scales

- transit frequencies for electrons, magnetic field
 thermal or Alfvén velocity and parallel scale
- turbulence spectrum range, acoustic frequencies go with sound speed
- parallel scales have consequences for time scale separation

$$\frac{c_s}{L_{\perp}} > \frac{v_A}{qR} \sim \frac{V_e}{qR} \gg \frac{c_s}{R} > \frac{c_s}{qR}$$

• the space scale ratio affects relaxation

several
$$10^2 \frac{L_{\perp}}{c_s} \sim \nu_i^{-1}$$
 and in some cases several $\nu_i^{-1} \sim \frac{L_{\perp}^2}{\chi_i}$

what determines the edge?

• mainly, the electron thermal nonadiabaticity condition: $c_s/L_{\perp} > V_e/qR$, or $\hat{\mu} > 1$

def:
$$\hat{\mu} = \frac{m_e}{M_D} \left(\frac{qR}{L_\perp}\right)^2$$

- consider the boundary, $\hat{\mu} = 1$, then $c_s/L_{\perp} = V_e/qR \rightarrow \text{edge/core bndy}$
- solve this for the profile scale length

$$L_{\perp} = \sqrt{m_e/M_D} \, qR$$

for linear profile gradients this is typically about 8 cm
 and it holds over about the last 4 cm within the LCFS

on the other hand, if a pedestal exists, the top is the edge/core boundary

Low Pressure (Beta) Dynamics

--> strict perpendicular force balance $\nabla (4\pi \tilde{p} + BB)$

 $\omega \sim k_{\parallel} v_A$ --> electromagnetic parallel dynamics

low frequency drift regime

• fluid \rightarrow reduced equations

$$\mathbf{E} \rightarrow -\frac{1}{c} \frac{\partial A_{\parallel}}{\partial t} \mathbf{b} - \nabla \phi \qquad \nabla \cdot \mathbf{u}_{\perp} \sim \frac{\mathbf{u}_{\perp}}{R} \ll \mathbf{u} \cdot \nabla$$
$$\mathbf{v}_{E} = \frac{c}{B^{2}} \mathbf{B} \times \nabla \phi$$
$$B^{2} = \frac{B_{0}^{2} R_{0}^{2}}{R^{2}} \left[1 + O\left(\frac{a}{qR}, \beta\right) \right] \rightarrow \frac{I^{2}}{R^{2}}$$

• kinetic \rightarrow gyrokinetic

$$\mathbf{A} \rightarrow \mathbf{A}_{eq} + A_{\parallel} \mathbf{b} \qquad \mathbf{b} \rightarrow R \nabla \varphi \qquad \psi_T \rightarrow \psi_{eq} + A_{\parallel} R$$

def: $\Omega_E = \frac{c}{B} \nabla_{\perp}^2 \phi \ll \frac{eB}{mc} \qquad \mu = \frac{m v_{\perp}^2}{2B} \rightarrow \text{ conserved, i.e., } \frac{d\mu}{dt} = 0$
then: $f = f(\mathbf{R}, z, \mu, t)$ but dynamics (exc. coll.) is in space of $\{\mathbf{R}, z\}$

example – magnetic compressibility

 $\bullet\,$ write MHD equations for ${\bf u}$ and ${\bf B}$

$$\rho_M \frac{d\mathbf{u}}{dt} = \frac{1}{c} \mathbf{J} \times \mathbf{B} - \nabla p \qquad \qquad \frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B})$$

- in tokamak geometry, $\mathbf{B} = F_{\text{dia}} \nabla \varphi + \nabla \psi_T \times \nabla \varphi$, and in general: $\mu_0 \mathbf{J} = \nabla \times \mathbf{B}$
- form equations for $\nabla \cdot \mathbf{u}$ and F_{dia}

$$\nabla \cdot \mu_0 \rho_M R^2 \frac{d\mathbf{u}}{dt} = -\nabla^2 \frac{F_{\text{dia}}^2}{2} - \nabla \cdot \left(\Delta^* \psi_T \nabla \psi_T + \mu_0 R^2 \nabla p\right)$$
$$\frac{\partial}{\partial t} \frac{F_{\text{dia}}}{R^2} = -F_{\text{dia}} \nabla \cdot \frac{\mathbf{u}}{R^2} - \frac{\mathbf{u}}{R^2} \cdot \nabla F_{\text{dia}} + \mathbf{B} \cdot \nabla \left(\mathbf{u} \cdot \nabla \varphi\right)$$

• for $k_{\perp}v_A \gg \partial/\partial t$ and reasonable velocities these reduce to

$$F_{\text{dia}} \rightarrow I = \text{constant} \qquad \nabla \cdot \frac{\mathbf{u}}{R^2} \rightarrow 0 \rightarrow \text{drifts}$$

drifts in reduced model

• solve for **u** in Lorentz force instead of inertia since $ZeB/mc \gg \partial/\partial t$

$$nm\frac{d\mathbf{u}}{dt} + \nabla \cdot \mathbf{\Pi}^* = nZe\left(\mathbf{E} + \frac{\mathbf{u}}{c} \times \mathbf{B}\right) - \nabla p$$

• find drifts

$$\mathbf{u}_{\perp} = \frac{c}{B^2} \mathbf{B} \times \left(\nabla \phi + \frac{1}{nZe} \nabla p \right) + \frac{mc}{ZeB^2} \mathbf{B} \times \left(\frac{d\mathbf{u}}{dt} + \frac{1}{nm} \nabla \cdot \mathbf{\Pi}^* \right)$$

• last term is polarisation velocity, and total inertia \rightarrow polarisation current

all inertia is polarisation (incl. diamag. momentum flux)

vorticity in reduced model

• vorticity instead of fluid inertia (all inertia becomes polarisation)

$$\frac{\partial \varpi}{\partial t} + [\phi, \varpi] = B \nabla_{\parallel} \frac{J_{\parallel}}{B} - \mathcal{K}(p) \qquad \leftrightarrow \qquad \nabla \cdot \mathbf{J} = 0$$

• geometry and ordering under $L_{\perp} \ll R$ and $nmu_E^2 \ll p$ and $\rho_s \ll L_{\perp}$

$$[f,g] = \frac{cR^0}{B^0} \nabla \varphi \cdot (\nabla f \times \nabla g) \qquad \qquad B \nabla_{\parallel} f = \mathbf{B} \cdot \nabla f = \mathbf{B}^0 \cdot \nabla f - \nabla \varphi \cdot (\nabla A_{\parallel} R \times \nabla f)$$
$$\mathcal{K}(f) = [(R/R_0)^2, f] \qquad \qquad \nabla \cdot f \mathbf{v}_E \quad \rightarrow \quad [\phi, f] - f_0 \mathcal{K}(\phi)$$

• vorticity in the reduced MHD limit

$$\varpi = \nabla \cdot \frac{\rho_M c^2}{B^2} \nabla_\perp \phi \quad \to \quad \frac{\rho_{M0} c^2}{B_0^2} \nabla_\perp^2 \phi \quad \to \text{normalisation} \to \quad \rho_s^2 \nabla_\perp^2 \phi$$

normalisation and scales

• low-freq, pressure driven \rightarrow sound speed normalisation, not an Alfvénic one

$$n \leftrightarrow n_0 \qquad \phi \leftrightarrow \frac{T_e}{e} \qquad u_{\parallel} \leftrightarrow c_s \qquad J_{\parallel} \leftrightarrow n_0 e c_s \qquad A_{\parallel} \leftrightarrow B_0 \rho_s$$

• for vorticity, divide apparent charge density by $n_0 e$, use above, to find

$$\varpi \leftrightarrow \frac{\rho_{M0}c^2}{B_0^2} \frac{T_e}{n_0 e^2} \nabla_{\perp}^2 \phi \to \rho_s^2 \nabla_{\perp}^2 \phi \qquad \qquad \rho_s^2 = \frac{c^2 M_i T_e}{e^2 B_0^2} \quad \to \quad \rho_s = \frac{c_s}{\Omega_i}$$

- the scale ρ_s is demanded by eventual $n_e e \nabla_{\parallel} \phi \sim \nabla_{\parallel} p_e \rightarrow T_e/e$ for ϕ • this is the main neglect done by the MHD model
- time scale is nominal space scale divided by c_s , so using L_{\perp} you have

$$t \leftrightarrow \frac{L_{\perp}}{c_s} \qquad \delta = \frac{\rho_s}{L_{\perp}} \qquad \text{and} \quad \mathcal{K}, \quad [f,g] \to O(\delta) \quad \text{while} \quad \rho_s^2 \nabla_{\perp}^2 \to O(\delta^2)$$

MHD dynamics in reduced model

- in one-fluid MHD (familiar) you neglect diamagnetic effects
 o all appearances of ∇p next to ∇φ
 o implicitly assumes smallness of pressure fluctuations/dynamics
- solve for vorticity, electron density, and electron and ion parallel dynamics
 o any model used for learning purposes is isothermal

$$\begin{split} \frac{\partial \varpi}{\partial t} + [\phi, \varpi] &= B \nabla_{\parallel} \frac{J_{\parallel}}{B} - \mathcal{K}(n) \\ \frac{\partial n}{\partial t} + [\phi, n] + B \nabla_{\parallel} \frac{u_{\parallel}}{B} = \mathcal{K}(\phi) \\ \frac{\partial A_{\parallel}}{\partial t} &= -\nabla_{\parallel} \phi - \eta_{\parallel} J_{\parallel} \\ \frac{\partial u_{\parallel}}{\partial t} + [\phi, u_{\parallel}] &= -\nabla_{\parallel} n + \mu_{\parallel} \nabla_{\parallel}^{2} u_{\parallel} \end{split}$$

• with $\varpi = \rho_s^2 \nabla_{\perp}^2 \phi$ and $J_{\parallel} = -(\rho_s^2/\beta_e) \nabla_{\perp}^2 A_{\parallel}$ as self-consistent field equations

Reynolds stress and acoustic oscillations

• Reynolds stress is the same as polarisation nonlinearity

$$\frac{\partial \varpi}{\partial t} + \mathbf{v}_E \cdot \nabla \varpi = \cdots \quad \text{zonal component} \quad \rightarrow \quad \frac{\partial}{\partial t} \left\langle \varpi \right\rangle = \frac{\rho_s}{L_\perp} \rho_s^2 \frac{\partial^2}{\partial x^2} \left\langle \frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y} \right\rangle + \cdots$$

• zonal flow energy (grows if stress is aligned to zonal vorticity)

$$-\left\langle\phi\right\rangle\frac{\partial}{\partial t}\left\langle\varpi\right\rangle=\nabla\cdot\left(\cdots\right)+\frac{\rho_{s}}{L_{\perp}}\left\langle\varpi\right\rangle\left\langle-\frac{\partial\phi}{\partial x}\frac{\partial\phi}{\partial y}\right\rangle+\cdots$$

toroidicity gives rise to geodesic acoustic oscillation

take zonal component, find mode frequency
factors of ρ_s∂/∂x cancel, and the 1/2 is the average of sin² θ
thermal dynamics add coefficients, ion parallel dynamics adds corrections

$$\frac{\partial \varpi}{\partial t} + \dots = -\mathcal{K}(n) \qquad \qquad \frac{\partial n}{\partial t} + \dots = \mathcal{K}(\phi) \quad \rightarrow \quad \frac{\partial^2}{\partial t^2} = -\frac{1}{2} \left(\frac{2c_s}{R}\right)^2$$

 \mathbf{a}

new things at the fluid level

- in edge turbulence or any pedestal dynamics, never neglect ∇p against $\nabla \phi$ • this makes everything two-fluid, at least
- adiabatic coupling

• diamagnetic compression

sidebands $\langle p \sin \theta \rangle \quad \leftrightarrow \quad \langle p \rangle$

- MHD and acoustic systems coupled by both processes
- flow dynamics in simple models drastically altered

dynamics in reduced two-fluid model

- now you never neglect diamagnetic effects
 pressure dynamics is never "small" compared to flows, currents
- solve for vorticity, electron density, and electron and ion parallel dynamics
 o any model used for learning purposes is isothermal
 o write density as isothermal p_e to remember the physics, write normed masses μ_{i,e}

$$\frac{\partial \varpi}{\partial t} + [\phi, \varpi] = B \nabla_{\parallel} \frac{J_{\parallel}}{B} - \mathcal{K}(p_e)$$

$$\frac{\partial p_e}{\partial t} + [\phi, p_e] + B\nabla_{\parallel} \frac{u_{\parallel} - J_{\parallel}}{B} = \mathcal{K}(\phi - p_e)$$

$$\frac{\partial}{\partial t} \left(A_{\parallel} + \mu_e J_{\parallel} \right) + \left[\phi, \mu_e J_{\parallel} \right] = \nabla_{\parallel} (p_e - \phi) - 0.51 \mu_e \nu_e J_{\parallel}$$
$$\mu_i \frac{\partial u_{\parallel}}{\partial t} + \left[\phi, \mu_i u_{\parallel} \right] = -\nabla_{\parallel} p_e + \mu_{\parallel} \nabla_{\parallel}^2 u_{\parallel}$$

• with $\varpi = \rho_s^2 \nabla_{\perp}^2 \phi$ and $J_{\parallel} = -(\rho_s^2/\beta_e) \nabla_{\perp}^2 A_{\parallel}$ as self-consistent field equations

turbulence energetics

- adiabatic response allows ExB and thermal coupling through J_{\parallel} • as well as the curvature coupling that exists in one-fluid model
- free energy construction identify transfer effects as pieces of total divergences \circ multiply by $-\phi$ and J_{\parallel} and p_e respectively

$$\frac{1}{2}\frac{\partial}{\partial t}\left|\rho_{s}\nabla_{\perp}\phi\right|^{2}+\nabla\cdot\left(\right)=-\phi B\nabla_{\parallel}\frac{J_{\parallel}}{B}+\phi\mathcal{K}(p_{e})$$

$$\frac{1}{2}\frac{\partial}{\partial t}\left(\beta_{e}^{-1}\left|\rho_{s}\nabla_{\perp}A_{\parallel}\right|^{2}+\mu_{e}J_{\parallel}^{2}\right)+\nabla\cdot\left(\right)=\frac{J_{\parallel}}{B}B\nabla_{\parallel}(p_{e}-\phi)-0.51\mu_{e}\nu_{e}J_{\parallel}^{2}$$

$$\frac{1}{2}\frac{\partial}{\partial t}p_{e}^{2}=p_{e}B\nabla_{\parallel}\frac{J_{\parallel}}{B}+p_{e}\mathcal{K}(\phi-p_{e})$$

- processes in two-fluid models only • electron adiabatic compression $J_{\parallel} \nabla_{\parallel} p_e$ • diamagnetic compression $p_e \mathcal{K}(p_e)$
- processes in all models: ExB compression, $p_e \mathcal{K}(\phi)$, and sound waves

Energy Transfer: electromagnetic turbulence

(S Camargo et al Phys Plasmas 1995 and 1996)

Nonlinear Free Energy Cascade

direct cascade in delta—f entropy energy taken out of larger scales —> nonlinear drive at small scales

inverse cascade in ExB energy

--> nonlinear drive of long-wave MHD component

spectrum tied together scalings are affected

turbulence signatures

• basic turbulence with finite-beta drift wave mode structure

- spectra: mesoscale MHD activity, vorticity ('w') extends to ion gyroradius
- envelopes: ion temperature (magenta) largest fluctuation, most strongly ballooned
 o potential (blue) is flat: shear-Alfvén signature, one of the dissipation channels
- fluxes: moderate, not extreme, ballooning (2 to 1 is common)

Phase Shifts and their Measurement

one dependent variable quantity leads another in the drift direction

how to calculate α : $\alpha = \text{Im log } n^* \phi$

significance: a positive phase-shift implies a positive down-gradient flux

(B Scott Plasma Phys Contr Fusion 1997)

Nonlinear Transition

linear mode structure wiped out by turbulence after saturation

linear regime phase shift part of the eigenmode for each k_y linear mode structure destroyed by the turbulence during saturation mode structure at late times is the turbulence one: DW mode structure

Relevance Range for Linear Instabilities

dispersion space bounded by ideal interchange and diamagnetic rates

if the linear growth rate is below the red line then the instability is irrelevant usually, this is not the case anywhere in the spectrum (unless: MHD threshold) this situation is a direct consequence of very large $R/L_T >> 1$ in the edge (B Scott New J Phys 2002, Phys Plasmas 2005)

phase shifts – RMHD versus full gyrofluid

- gyrofluid turbulence is driven by both ∇T_e and ∇T_i
 o despite the ballooned structure of T_i
 o the n_e ↔ φ phase shifts remain drift-wave like, α ≥ 0
- this is completely different from RMHD, which has $\alpha \sim \pi/2$

parallel structure – RMHD vs full gyrofluid

- gyrofluid turbulence is driven by both ∇T_e and ∇T_i
 o despite the ballooned structure of T_i
 o the nonadiabatic part of p_e is almost flat
- this is completely different from RMHD,
 o which violates its assumption that n_ee∇φ ≫ ∇p_e (this always happens)

summary – edge turbulence basics

- ions say ITG, electrons say DW, $\tilde{\phi}$ says trans-MHD \rightarrow all are present/active
- gyrofluid edge-ITG signatures:

• T_i is largest and most ballooned $(T_{i\perp} \text{ a little more than } T_{i\parallel})$

 $\circ H = n_e - \phi$ is the flattest

- Alfvén signature: ϕ flatter than T_e which is flatter than n_e
- \circ nevertheless, the electron and ion ExB fluxes are comparable
- these features are why in your model for edge turbulence ...

you need to keep $p_e \leftrightarrow J_{\parallel} \leftrightarrow \phi$ adiabatic response

you need T_i distinct from p

you need to resolve ρ_i in any computations

flow energetics in a tokamak

- main element in a tokamak: geodesic curvature
 poloidal gradient in magnetic field in perpendicular drift dynamics
 absent in a 2D/interchange model
- main two-fluid element for flows:
 coupling between acoustic and Alfvén branches
- fate of zonal flow energy: transfer to dissipation channels via conservative processes

 turbulence → incoherent mixing
 adiabatic sideband compression → parallel electron dissipation
- how to do the analysis: sideband decomposition

 zonal and sin θ components of state variables (*ω*, *p_e*)
 sin cos component of flux variables (*J*_{||}, *u*_{||})
 keep NL only as source/sink effects via turbulence fluxes, flow stress (Γ, *R_E*)
 don't order ∂/∂t

Zonal Flow, Toroidal Compression

(Winsor et al Phys Fl 1968, Hahm et al Plasma Phys Contr Fusion 2002, 2004)

zonal flow $<\phi>$

compression at top divergence at bottom

pressure sideband $\langle p \sin \theta \rangle$

zonal flow exchanges conservatively with pressure sideband --> transfer pathway, equipartition

detailed example – continuity equation

• electrons: start with

$$\frac{\partial p_e}{\partial t} + [\phi, p_e] + B\nabla_{\parallel} \frac{u_{\parallel} - J_{\parallel}}{B} = \mathcal{K} \left(\phi - p_e\right)$$

- zonal component: flux surface average, fsavg , annihilates linear $B \nabla_{\parallel}$
- the bracket terms represent turbulent flux (transport)

$$\left\langle \left[\phi, p_e\right] \right\rangle + \left\langle B \nabla_{\parallel} \frac{u_{\parallel} - J_{\parallel}}{B} \right\rangle = \frac{\partial}{\partial x} \left\langle \Gamma \right\rangle$$

• geodesic curvature has $\sin \theta$ component, only one to survive fsavg

$$\frac{\partial}{\partial t} \langle p_e \rangle + \frac{\partial}{\partial x} \langle \Gamma \rangle = \omega_B \frac{\partial}{\partial x} \langle (\phi - p_e) \sin \theta \rangle \qquad \qquad \omega_B = \frac{2\rho_s}{R}$$

• the sideband is the disturbance maintained by gradients and finite collisionality

detailed example - continuity sideband

- \bullet electrons: sideband component: multiply by $\sin\theta$ and then take fsavg
- integrate $\partial/\partial\theta$ in ∇_{\parallel} by parts under fsavg

$$\left\langle \sin\theta \nabla_{\parallel} u_{\parallel} \right\rangle = -\left\langle u_{\parallel} \nabla_{\parallel} \sin\theta \right\rangle = -k_{\parallel} \left\langle u_{\parallel} \cos\theta \right\rangle \qquad \qquad k_{\parallel} = \frac{L_{\perp}}{qR}$$

• in the curvature term approximate fsavg of $\sin^2 \theta$ by 1/2

$$\langle \sin\theta \mathcal{K}(\phi) \rangle = \omega_B \left\langle \sin^2\theta \frac{\partial\phi}{\partial x} \right\rangle = \frac{\omega_B}{2} \frac{\partial}{\partial x} \left\langle \phi \right\rangle$$

• resulting pressure sideband equation (treat fluxes as in zonal part)

$$\frac{\partial}{\partial t} \left\langle p_e \sin \theta \right\rangle + \frac{\partial}{\partial x} \left\langle \Gamma \sin \theta \right\rangle - k_{\parallel} \left\langle \left(u_{\parallel} - J_{\parallel} \right) \cos \theta \right\rangle = \frac{\omega_B}{2} \frac{\partial}{\partial x} \left\langle \phi - p_e \right\rangle$$

detailed example – parallel forces

• electrons: start with

$$\frac{\partial}{\partial t} \left(A_{\parallel} + \mu_e J_{\parallel} \right) + \left[\phi, \mu_e J_{\parallel} \right] = \nabla_{\parallel} \left(p_e - \phi \right) - 0.51 \mu_e \nu_e J_{\parallel}$$

flux variable sideband component: multiply by cos θ and then take fsavg
o integrate ∂/∂θ in ∇_{||} by parts under fsavg (watch signs)
o the nonlinear terms in this equation are small (MHD stable regime)

$$\frac{\partial}{\partial t} \left\langle \left(A_{\parallel} + \mu_e J_{\parallel} \right) \cos \theta \right\rangle = k_{\parallel} \left\langle \left(p_e - \phi \right) \sin \theta \right\rangle - 0.51 \mu_e \nu_e \left\langle J_{\parallel} \cos \theta \right\rangle$$

detailed example – parallel forces

• ions: start with

$$\mu_i \frac{\partial}{\partial t} u_{\parallel} + [\phi, \mu_i u_{\parallel}] = -\nabla_{\parallel} p_e + \mu_{\parallel} \nabla_{\parallel}^2 u_{\parallel}$$

flux variable sideband component: multiply by cos θ and then take fsavg
o integrate ∂/∂θ in ∇_{||} by parts under fsavg (watch signs)
o the nonlinear terms in this equation are small (subsonic regime)

$$\frac{\partial}{\partial t} \left\langle \mu_i u_{\parallel} \cos \theta \right\rangle = -k_{\parallel} \left\langle p_e \sin \theta \right\rangle - \mu_{\parallel} k_{\parallel}^2 \left\langle u_{\parallel} \cos \theta \right\rangle$$

detailed example – charge conservation

• charge: start with the vorticity equation

$$\frac{\partial \varpi}{\partial t} + [\phi, \varpi] = B \nabla_{\parallel} \frac{J_{\parallel}}{B} - \mathcal{K}(p_e)$$

zonal component: treat as in the zonal continuity equation
the bracket term represents Reynolds/Maxwell stresses (ExB forcing)

$$\left< \left[\phi, \varpi\right] \right> - \left< B \nabla_{\parallel} \frac{J_{\parallel}}{B} \right> = \frac{\partial^2}{\partial x^2} \left< R_E \right>$$

• geodesic curvature has $\sin \theta$ component, only one to survive fsavg

$$\frac{\partial}{\partial t} \left\langle \varpi \right\rangle = -\frac{\partial^2}{\partial x^2} \left\langle R_E \right\rangle - \omega_B \frac{\partial}{\partial x} \left\langle p_e \sin \theta \right\rangle$$

• the sideband is the disturbance maintained by gradients and finite collisionality
Sideband Dynamics for Flows/Currents

• zonal vorticity, pressure sideband, sound wave sideband

$$\frac{\partial}{\partial t} \left\langle \varpi \right\rangle = -\frac{\partial^2}{\partial x^2} \left\langle R_E \right\rangle - \omega_B \frac{\partial}{\partial x} \left\langle p_e \sin \theta \right\rangle$$

$$\frac{\partial}{\partial t} \langle p_e \sin \theta \rangle + \frac{\partial}{\partial x} \langle \Gamma \sin \theta \rangle = \frac{\omega_B}{2} \frac{\partial}{\partial x} \langle \phi \rangle - \frac{\omega_B}{2} \frac{\partial}{\partial x} \langle p_e \rangle + k_{\parallel} \langle u_{\parallel} \cos \theta \rangle - k_{\parallel} \langle J_{\parallel} \cos \theta \rangle$$
$$\frac{\partial}{\partial t} \mu_i \langle u_{\parallel} \cos \theta \rangle = -k_{\parallel} \langle p_e \sin \theta \rangle - \mu_{\parallel} k_{\parallel}^2 \langle u_{\parallel} \cos \theta \rangle$$

• Alfvén sideband, flow sideband, zonal pressure

$$\frac{\partial}{\partial t} \left\langle \left(A_{\parallel} + \mu_{e} J_{\parallel}\right) \cos \theta \right\rangle = k_{\parallel} \left\langle p_{e} \sin \theta \right\rangle - k_{\parallel} \left\langle \phi \sin \theta \right\rangle - 0.51 \mu_{e} \nu_{e} \left\langle J_{\parallel} \cos \theta \right\rangle$$
$$\frac{\partial}{\partial t} \left\langle \varpi \sin \theta \right\rangle = -\frac{\partial^{2}}{\partial x^{2}} \left\langle R_{E} \sin \theta \right\rangle - k_{\parallel} \left\langle J_{\parallel} \cos \theta \right\rangle - \frac{\omega_{B}}{2} \frac{\partial}{\partial x} \left\langle p_{e} \right\rangle$$
$$\frac{\partial}{\partial t} \left\langle p_{e} \right\rangle + \frac{\partial}{\partial x} \left\langle \Gamma \right\rangle = \omega_{B} \frac{\partial}{\partial x} \left\langle \phi \sin \theta \right\rangle - \omega_{B} \frac{\partial}{\partial x} \left\langle p_{e} \sin \theta \right\rangle$$

zonal flow energetics

- the equations don't all fit on the page, but this is what you do ...
 here, one equation per page
- for the zonal vorticity multiply by fsavg of $-\phi$ and integrate over $d\mathcal{V}$

$$\int d\mathcal{V} \times \left\langle -\phi \right\rangle \frac{\partial}{\partial t} \left\langle \varpi \right\rangle = \left\langle \phi \right\rangle \frac{\partial^2}{\partial x^2} \left\langle R_E \right\rangle + \left\langle \phi \right\rangle \frac{\partial}{\partial x} \omega_B \left\langle p_e \sin \theta \right\rangle$$
$$\int d\mathcal{V} \times \frac{1}{2} \frac{\partial}{\partial t} \left\langle \rho_s \nabla_\perp \phi \right\rangle^2 = \left\langle \varpi \right\rangle \left\langle R_E \right\rangle - \omega_B \left\langle p_e \sin \theta \right\rangle \frac{\partial}{\partial x} \left\langle \phi \right\rangle$$

- flow energy driven by Reynolds/Maxwell stress (corr. with zonal vorticity)
- flow energy is depleted by geodesic compression

turbulence driven zonal flows saturate at low levels

pressure sideband energetics

• for the pressure sideband multiply by $2 \langle p_e \sin \theta \rangle$ and integrate over $d\mathcal{V}$

$$\int d\mathcal{V} \times 2 \langle p_e \sin \theta \rangle \frac{\partial}{\partial t} \langle p_e \sin \theta \rangle = \cdots + \omega_B \langle p_e \sin \theta \rangle \frac{\partial}{\partial x} \langle \phi \rangle - 2 \langle p_e \sin \theta \rangle \frac{\partial}{\partial x} \langle \Gamma \sin \theta \rangle - 2k_{\parallel} \langle p_e \sin \theta \rangle \langle J_{\parallel} \cos \theta \rangle \int d\mathcal{V} \times \frac{\partial}{\partial t} \langle p_e \sin \theta \rangle^2 = \cdots + \omega_B \langle p_e \sin \theta \rangle \frac{\partial}{\partial x} \langle \phi \rangle - 2 \langle \Gamma \sin \theta \rangle \left\langle -\frac{\partial p_e}{\partial x} \sin \theta \right\rangle - 2k_{\parallel} \langle p_e \sin \theta \rangle \left\langle J_{\parallel} \cos \theta \right\rangle$$

- drive by geodesic compression (conservative transfer from zonal flow energy)
- sink by turbulent mixing and adiabatic compression ...

turbulent mixing is one of the main sinks for zonal flow energy

Ohmic sideband energetics

• for the current sideband multiply by $2\langle J_{\parallel} \cos \theta \rangle$ and integrate over $d\mathcal{V}$

$$2\left\langle J_{\parallel}\cos\theta\right\rangle \frac{\partial}{\partial t}\left\langle A_{\parallel}\cos\theta\right\rangle = \ldots + 2k_{\parallel}\left\langle J_{\parallel}\cos\theta\right\rangle \left\langle p_{e}\sin\theta\right\rangle - 2\eta_{\parallel}\left\langle J_{\parallel}\cos\theta\right\rangle^{2}$$

$$\frac{\partial}{\partial t}\beta_{e}^{-1}\left\langle\rho_{s}(\nabla_{\perp}A_{\parallel})\cos\theta\right\rangle^{2} = \ldots + 2k_{\parallel}\left\langle p_{e}\sin\theta\right\rangle\left\langle J_{\parallel}\cos\theta\right\rangle - 2\eta_{\parallel}\left\langle J_{\parallel}\cos\theta\right\rangle^{2}$$

- magnetic and parallel electron kinetic energy (the $\mu_e J_{\parallel}$ term, not shown)
- drive by adiabatic compression (conservative transfer from pressure sideband energy)
 the other process, Alfvénic compression, leads to the Pfirsch-Schlüter current (equil.)
- sink by dissipation (here, resistivity)

the sink by dissipation is the other main sink for zonal flow energy

Energy Transfer: flows and currents

Coupling to Zonal Flows

turbulence regulated by flows, regulated by toroidal compression

eddy Reynolds stress --> energy transfer from turbulence to flows turbulence moderately weakened but not suppressed toroidal compression --> energy loss channel to pressure, turbulence entire system in self regulated statistical equilibrium (turb, flows, mag eq)

(B Scott Phys Lett A 2003, New J Phys 2005)

Turbulence vs Geodesic Curvature

• no geodesic curvature \implies no sideband dynamics • details: New J Phys 7 (2005) 92

- self-generated flows are held down by geodesic compression . . .
 - $\circ \implies$ coupling back to turbulence, coupling to dissipative currents
- flows have weak effect on saturated energy, no role for predator-prey mechanism

(B Scott Phys Lett A 2003, New J Phys 2005)

what is gyrokinetic

- low frequency approximations, usually also low- β and small a/qR
- polarisation density, not polarisation current
- gyrocenter charge density \leftrightarrow vorticity, polarisation current
- ambipolarity of **particle** charge density holds
- ambipolarity of **gyrocenter** charge density holds only in steady state $\partial/\partial t = 0$
- gauge transformation (coordinate changes, addition of pure divergences)
 addition of a pure divergence ⇒ integrations by parts
- equivalent to gyroaveraging over a ring orbit only at linear order
- Lagrangian/Hamiltonian support → automatic energetic consistency
 o works in practice only if field equations are obtained from the same Lagrangian

what is gyrofluid

- it is a **representation** not a closure and not an ordering
- example: Hasegawa-Wakatani (fold the gradient term n_0 into n)

$$\frac{\partial n}{\partial t} + [\phi, n] = B \nabla_{\parallel} \frac{J_{\parallel}}{B} \qquad \qquad \frac{\partial}{\partial t} \nabla_{\perp}^2 \phi + [\phi, \nabla_{\perp}^2 \phi] = B \nabla_{\parallel} \frac{J_{\parallel}}{B}$$

subtract and define N

$$\frac{\partial N}{\partial t} + [\phi, N] = 0 \qquad \qquad N = n - \nabla_{\perp}^2 \phi$$

• this is nothing more and nothing less than the simplest gyrofluid model \circ equations for n and N with "polarisation" $-\nabla_{\perp}^2 \phi = N - n$

no polarisation drift for gyrocenters, but a polarisation density

how to treat FLR

• lots of detail, but the simplest long-wavelength version is

$$\phi_G = \left(1 + \frac{\rho_i^2}{2} \nabla_{\perp}^2\right) \phi \qquad \qquad n_G = \left(1 + \frac{\rho_i^2}{2} \nabla_{\perp}^2\right) N$$

then

$$\frac{\partial N}{\partial t} + [\phi_G, N] + \cdots$$
 and $-\rho_s^2 \nabla_{\perp}^2 \phi = n_G - n_G$

• lots of algebra including bracket forms such as

$$\nabla^2_{\perp}[f,g] = \nabla \cdot [f,\nabla_{\perp}g] + \nabla \cdot [\nabla_{\perp}f,g] \qquad \nabla \cdot [f,\nabla_{\perp}g] = [\nabla_{\perp}f,\nabla_{\perp}g] + [f,\nabla^2_{\perp}g]$$

use the fact that τ_iρ²_s = ρ²_i, grind away,
o and recover the fluid polarisation drift divergence, label p_i = τ_in

$$\frac{\partial n}{\partial t} + [\phi, n] - \nabla \cdot \left(\frac{\partial}{\partial t} + [\phi,]\right) \nabla_{\perp} (\phi + p_i) + \cdots$$

fluid vs gyrofluid – same model

- using these methods, can show that gyrofluid FLR covers fluid nonlinear polarisation
- dissipation ...
- large-ν_i limit of p_{i||} − p_{i⊥} represents parallel viscosity
 o including heat flux crossover (arises from v-dependence of C-operator)
- large- ν limit of $q_{\parallel\parallel}, q_{\perp\parallel} \rightarrow q_{\parallel}$ covers thermal conduction, parallel thermal force
- result: thermal gyrofluid model covers reduced Braginskii in all aspects
- reference: *Phys Plasmas* **14** (2007) 112318

gyrofluid model is ... easier to maintain computationally has an obvious descent from underlying gyrokinetic theory covers pedestal dynamics in transcollisional regime

gyrokinetics and neoclassics

- basic assumptions of neoclassical theory applied to the gyrokinetic equation system
 o gyrokinetic theory requires only ρ_L ≪ L_⊥ (forced by Ω_E ≪ Ω_i)
 o conventional neoclassical theory requires ρ_L(qR/a) ≪ L_⊥
- split f into background F^M and disturbance δf arising from thermal gradients
- usually neglect FLR corrections, since $\rho_L \ll L_{\perp}$ • note orbit width comes from drifts, not FLR per se
- resulting equation set is identical to that used in neoclassical theory
- then, the fully nonlinear set you started with can be used in computations
 (that is, if you coded them as they stand)

basic assumption of neoclassical theory

• time scales: slow compared to relaxation dynamics, fast compared to transport

$$\frac{v_A}{qR} > \frac{c_s}{R} > \nu_i > \frac{\partial}{\partial t} > \frac{\chi_{\rm NC}}{L_{\perp}^2}$$

• space scales:

 \circ this also follows from drifts \ll parallel/collisional relaxation

$$\rho_B \sim \rho_s \frac{qR}{a} < L_\perp$$

marginal but not strongly violated even in pedestal for conventional tokamaks

neoclassical models

• drift-kinetic equation with small drift piece acting on Maxwellian $F^M(\epsilon, \mu, \psi_c)$ \circ note $\partial/\partial t$ on sideband piece is neglected by the ordering

$$v_{\parallel}\nabla_{\parallel}\left(\delta f + \frac{Ze}{T}\phi F^{M}\right) - C(\delta f) = -\mathbf{v}_{d}\cdot\left(\nabla F^{M} + F^{M}\frac{Ze}{T}\nabla\phi\right)$$

- flow damping rate ν_{NC} : maximal ordering $v_{\parallel}/qR \sim \nu_i$ suborderings: • banana regime: $v_{\parallel}/qR > \nu_i \rightarrow \nu_B \propto \nu_i$ • collisional regime: $v_{\parallel}/qR < \nu_i \rightarrow \nu_{PS} \propto \nu_i^{-1}$ • plateau regime, often modeled with simple crossover function (WM Stacey, 1990s) $\nu_{NC} = \nu_B \nu_{PS}/(\nu_B + \nu_{PS})$
- standard treatments work through moment equations • conserved quantities $\leftrightarrow F^M$ • fluxes, relaxation $\leftrightarrow \delta f$
- lots of detail, endless argument ... for basics refer to FL Hinton and RD Hazeltine, *Rev Mod Phys* 48 (1976) 239

fluid analog

- write delta-f reduced fluid equations
- do sideband analysis
- keep consequences of neoclassical ordering
 zonal averages of conserved quantities
 divergence balance of flux variables (u_{||}, J_{||}, etc., no A_{||})
 force balance of state variables (p_e, ∞ → φ, etc.)

detailed example – divergence balances

• electrons: start with

$$\frac{\partial p_e}{\partial t} + [\phi, p_e] + B\nabla_{\parallel} \frac{u_{\parallel} - J_{\parallel}}{B} = \mathcal{K} \left(\phi - p_e\right)$$

- state variable sideband component: multiply by sin θ and then take fsavg
 o note ∂/∂t on sideband piece is neglected by the ordering
 o integrate ∂/∂θ in ∇_n by parts under fsavg
 - \circ integrate $\partial/\partial\theta$ in ∇_{\parallel} by parts under fsavg
 - \circ in the curvature term approximate fsavg of $\sin^2\theta$ by 1/2
 - \circ for these purposes neglect nonlinear terms

$$k_{\parallel} \left\langle \left(u_{\parallel} - J_{\parallel} \right) \cos \theta \right\rangle = -\frac{\omega_B}{2} \frac{\partial}{\partial x} \left\langle \phi - p_e \right\rangle$$

• considering ions also and separating J_{\parallel} these are the divergence balances

$$k_{\parallel} \left\langle J_{\parallel} \cos \theta \right\rangle = -\frac{\omega_B}{2} \frac{\partial}{\partial x} \left\langle p_e + p_i \right\rangle \qquad \qquad k_{\parallel} \left\langle u_{\parallel} \cos \theta \right\rangle = -\frac{\omega_B}{2} \frac{\partial}{\partial x} \left\langle \phi + p_i \right\rangle$$

detailed example – parallel forces

• electrons: start with

$$\frac{\partial}{\partial t} \left(A_{\parallel} + \mu_e J_{\parallel} \right) + \left[\phi, \mu_e J_{\parallel} \right] = \nabla_{\parallel} \left(p_e - \phi \right) - 0.51 \mu_e \nu_e J_{\parallel}$$

flux variable sideband component: multiply by cos θ and then take fsavg
o note ∂/∂t on sideband piece is neglected by the ordering
o integrate ∂/∂θ in ∇_{||} by parts under fsavg
o for these purposes neglect nonlinear terms

$$k_{\parallel} \left\langle (p_e - \phi) \sin \theta \right\rangle = 0.51 \mu_e \nu_e \left\langle J_{\parallel} \cos \theta \right\rangle$$

• with temperature dynamics there is more to it than this but the ideas remain

detailed example – parallel forces

• ions: start with

$$\mu_{i}\frac{\partial}{\partial t}u_{\parallel} + \left[\phi, \mu_{i}u_{\parallel}\right] = -\nabla_{\parallel}\left(p_{e} + p_{i}\right) + \mu_{\parallel}\nabla_{\parallel}^{2}\left(u_{\parallel} + kq_{i\parallel}\right)$$

flux variable sideband component: multiply by cos θ and then take fsavg
o note ∂/∂t on sideband piece is neglected by the ordering
o integrate ∂/∂θ in ∇_{||} by parts under fsavg
o for these purposes neglect nonlinear terms

$$k_{\parallel} \left\langle \left(p_{e} + p_{i} \right) \sin \theta \right\rangle = -\mu_{\parallel} k_{\parallel}^{2} \left\langle \left(u_{\parallel} + kq_{i\parallel} \right) \cos \theta \right\rangle$$

here we've kept enough of the temperature dynamics to get rotation effects
because these parallel flux variables are considered in divergence balance

$$k_{\parallel} \left\langle u_{\parallel} \cos \theta \right\rangle = -\frac{\omega_B}{2} \frac{\partial}{\partial x} \left\langle \phi + p_i \right\rangle \qquad k_{\parallel} \left\langle q_{i\parallel} \cos \theta \right\rangle = -\frac{5}{2} \frac{\omega_B}{2} \frac{\partial}{\partial x} \left\langle T_i \right\rangle$$

rotation – zonal charge balance

• start with (warm-ion) vorticity equation, keep polarisation, neglect nonlinearities

$$\frac{\partial}{\partial t}\rho_s^2 \nabla_{\perp}^2 \left(\phi + p_i\right) = B \nabla_{\parallel} \frac{J_{\parallel}}{B} - \mathcal{K} \left(p_e + p_i\right)$$

• zonal component

$$\frac{\partial}{\partial t}\rho_s^2 \frac{\partial^2}{\partial x^2} \left\langle \phi + p_i \right\rangle = -\omega_B \frac{\partial}{\partial x} \left\langle (p_e + p_i) \sin \theta \right\rangle$$

plug in from last page, evaluate coefficients

$$\frac{\partial}{\partial t}\rho_s^2 \frac{\partial^2}{\partial x^2} \left\langle \phi + p_i \right\rangle = -\frac{\mu_{\parallel} \omega_B^2}{2} \frac{\partial^2}{\partial x^2} \left\langle \left(\phi + p_i + \frac{5}{2}kT_i\right) \right\rangle$$

• this says ϕ -profile relaxes into neoclassical balance with rate $\mu_{\parallel}\omega_B^2/2$ \circ nonzero fluid rotation given by kT_i piece, same (relation, damping model) as in

P Helander and DJ Sigmar, Collisional Transport in Magnetized Plasmas (2002)

MHD and flow equilibration processes

- the way we did it for flow energetics, *i.e.*, don't order ∂/∂t
 allow it to cover from v_A/qR to c_s/R to nu_i to transport
- displayed: isothermal version for clarity, except keeping $kq_{i\parallel}$ in viscosity \circ in the computations carry the entire system (12 gyrofluid equations)
- acoustic branch: zonal vorticity ϖ , sidebands for n_e and u_{\parallel}
- MHD branch: zonal n_e , sidebands for J_{\parallel} and ϖ
- main point: these branches are coupled only by two-fluid processes
 adiabatic compression among sidebands for n_e and J_{||} and φ
 diamagnetic compression between zonal and sideband n_e
 in the thermal version, especially important for T_i
 why? because T_i is not constrained by Alfvén dynamics
- these processes strongly alter zonal flow relaxation
 they are absent in the "resistive ballooning" and "2D interchange" models
- details: New J Phys 7 (2005) 92

Sideband Dynamics for Warm-Ion Flows

• zonal vorticity, pressure sideband, sound wave sideband

$$\frac{\partial}{\partial t} \left\langle \varpi \right\rangle = -\omega_B \frac{\partial}{\partial x} \left\langle (p_e + p_i) \sin \theta \right\rangle$$

$$\frac{\partial}{\partial t} \langle n_e \sin \theta \rangle = \frac{\omega_B}{2} \frac{\partial}{\partial x} \langle \phi - p_e \rangle + k_{\parallel} \langle u_{\parallel} \cos \theta \rangle - k_{\parallel} \langle J_{\parallel} \cos \theta \rangle$$
$$\frac{\partial}{\partial t} \mu_i \langle u_{\parallel} \cos \theta \rangle = -k_{\parallel} \langle (p_e + p_i) \sin \theta \rangle - \mu_{\parallel} k_{\parallel}^2 \langle (u_{\parallel} + kq_{i\parallel}) \cos \theta \rangle$$

• Alfvén sideband, flow sideband, zonal pressure

$$\frac{\partial}{\partial t} \left(\left\langle A_{\parallel} \cos \theta \right\rangle + \mu_{e} \left\langle J_{\parallel} \cos \theta \right\rangle \right) = k_{\parallel} \left\langle p_{e} \sin \theta \right\rangle - k_{\parallel} \left\langle \phi \sin \theta \right\rangle - 0.51 \mu_{e} \nu_{e} \left\langle J_{\parallel} \cos \theta \right\rangle \\\\\frac{\partial}{\partial t} \left\langle \varpi \sin \theta \right\rangle = -k_{\parallel} \left\langle J_{\parallel} \cos \theta \right\rangle - \frac{\omega_{B}}{2} \frac{\partial}{\partial x} \left\langle p_{e} + p_{i} \right\rangle \\\\\frac{\partial}{\partial t} \left\langle n_{e} \right\rangle = \omega_{B} \frac{\partial}{\partial x} \left\langle \phi \sin \theta \right\rangle - \omega_{B} \frac{\partial}{\partial x} \left\langle p_{e} \sin \theta \right\rangle$$

flow equilibration in the fluid model

- logarithmic time axis, shows all successive phases
- rotation balances (c_s/R) , relaxes (ν_i) , then decays with transport • radial electric field $(A_P \text{ is axis value of } \phi)$, poloidal flow $(E_u \text{ is energy in } u_{\parallel})$

relaxation in a gyrokinetic model

• large-scale "shear-Alfvén gyrokinetics" with fields ϕ , A_{\parallel} and no gyroaveraging \circ axisymmetric geometry and dynamics – a 4D (2X×2V) model

Contrib Plasma Phys 50 (2010) 228 and Phys Plasmas 17 (2010) 112302

• for each species (ions, electrons, $Z = \pm 1$)

$$B_{\parallel}^* \frac{\partial f}{\partial t} + \nabla H \cdot \frac{c}{Ze} \mathbf{b} \times \nabla f + \left(\mathbf{B} + p_z \frac{c}{Ze} \nabla \times \mathbf{b} \right) \cdot \left(\frac{\partial H}{\partial p_z} \nabla f - \frac{\partial f}{\partial p_z} \nabla H \right) = C(f)$$

• self-consistent fields

$$\sum_{\mathrm{Sp}} \int d\mathcal{W} \left[Zef + \frac{1}{B_{\parallel}^*} \nabla \cdot B_{\parallel}^* \frac{fmc^2}{B^2} \nabla_{\perp} \phi \right] = 0$$
$$\nabla_{\perp}^2 A_{\parallel} + \frac{4\pi}{c} \sum_{\mathrm{Sp}} \int d\mathcal{W} \left[\frac{Ze}{m} \left(p_z - \frac{Ze}{c} A_{\parallel} \right) f \right] = 0$$

what Lagrangian did we get this from

• gyrocenter Lagrangian and Hamiltonian in coordinates $\{\mathbf{R}, p_z, \mu\}$

$$L_{p} = \left(\frac{Ze}{c}\mathbf{A} + p_{z}\mathbf{b}\right) \cdot \dot{\mathbf{R}} + \frac{mc}{Ze}\mu\dot{\vartheta} - H$$
$$H = \frac{1}{2m}\left(p_{z} - \frac{Ze}{c}A_{\parallel}\right)^{2} + \mu B + Ze\phi - \frac{mc^{2}}{2B^{2}}\left|\nabla_{\perp}\phi\right|^{2}$$

• full system Lagrangian as a field theoretical model

$$L = \int d\mathcal{V}\mathcal{L} \qquad \qquad \mathcal{L} = \sum_{\text{sp}} \int d\mathcal{W} f L_p - \frac{1}{8\pi R^2} \left| \nabla_{\perp} \left(\psi + A_{\parallel} R \right) \right|^2$$

- integration over space, $d\mathcal{V}$, and over velocity space, $d\mathcal{W}$ • in this case $\mathbf{b} = R\nabla\varphi$ and $B_{\parallel}^* = B$
- vary coordinates (eqn for f), and field variables (eqs for ϕ, A_{\parallel})

bootstrap current equilibration (collisions)

FEFI 4D, Edge Base Case, nominal $\nu_e a/c_s = 1.88$

bootstrap current J_b/n_ec_s 4 $\nu_{\rho} \stackrel{i}{=} 0$ $\nu_{e} = 1.88e - 3$ $v_e^- = 1.88e - 2$ $v_e^- = 1.88e - 1$ $v_e^- = 1.88e - 1$ $v_e^- = 1.88e 0$ 3 – 2 200 400 600 800 1000 () $c_s t/a$

bootstrap current equilibration (rho-star)

FEFI 4D, Edge Base Case, nominal $\rho_s/a = 1.83 \times 10^{-3}$

bootstrap current equilibration (rho-star)

FEFI 4D, Edge Base Case, more ITER-relevant, to $\rho_s/a = 6 \times 10^{-4}$

squeezed orbit regime in ITER

- KC Shaing's squeezed-orbit regime requires $L_{\perp} < \rho_B$ KC Shaing and RD Hazeltine, *Phys Fluids B* **4** (1992) 2547
- orbit squeezed by $\partial^2 \phi / \partial x^2$ defined by width of constant-*H* curve in *RZ*-plane \circ orbit is a 4D curve with 3 coordinates fixed (ϵ, μ, ψ_c)
- in equilibrium state, scale of φ tied to L_⊥
 but L_⊥ is limited by MHD stability (given fixed qR/a etc.)
- by definition, $\rho_s/L_{\perp} \lesssim a/qR$ should then be enough \rightarrow neoclassical transport \circ previous slides: only very small $\delta \lesssim 10^{-3}$ reached relaxed neoclassical state
- this was my experience running these cases: for a squeezed-regime start, transport reduced gradients before the finite ν_i could establish a steady neoclassical state
- it is hard to envisage this regime in the face of transport simultaneously occurring
- nevertheless definitive results not yet in, and it remains an interesting topic

pedestal width – models

- EPED: PB Snyder et al, Phys Plasmas 16 (2009) 056118
 simple version sets gradient to MHD boundary and width via KBM stability
 KBM (kinetic ballooning) is a core mode which limits the pedestal top
 EPED represents current data sets very well
 let's say it works for JET-size and smaller, at least
- alternative: use experience that local fluxtube models do not show H-mode transport
 o local requirement: small ρ_s/L_⊥
 o hence conjecture that L_⊥/ρ_s has to be below some limit in the pedestal

 \circ evaluate parameters at pedestal halfway point, with $L_{\perp} = |\nabla \log T_e|^{-1}$

- the values for AUG #17151 are $L_{\perp} = 3 \text{ cm}$ and T = 360 eV and B = 2 T• this gives $L_{\perp} = 24\rho_s$ (if you want sharper L_{\perp} then it's even fewer ρ_s)
- suppose we say L_⊥ must be below 32ρ_s to achieve H-mode
 result: optimistic for AUG, approximate for JET, but very pessimistic for ITER
- suppose we (EPED or other) say in ITER you'll have > 64ρ_s
 o then: local conditions are felt by the turbulence within the pedestal
 o then: → no H-mode

local models don't make H mode

- all the above physics is present
 - it is a 3D model in tokamak geometry, correct boundary conditions (global consistency, periodicity constraints, no radial periodicity or ballooning)
 - \circ 12-moment (e,i) electromagnetic gyrofluid model
 - \circ two species (e,i) electromagnetic gyrokinetic model
 - \circ flow effects included (both zonal flow and equilibrium flow, neoclassics)
- always find smooth monotonic rise of flux with parameters, e.g., ...
 gradient of β
 collisionality
 - \circ rho-star $(\rho_s/L_{\perp}) \leftrightarrow$ system size

Edge Core Transition Power Ramp

• model: GEM, 8 flux tubes, spaced at normalised volume radius values

 $r_a = \{ 0.55 \quad 0.61 \quad 0.67 \quad 0.73 \quad 0.79 \quad 0.85 \quad 0.91 \quad 0.97 \}$

- T and ∇T for $T_e = T_i$ adjusted to get flux times sfc \approx given input power \circ it is an optimisation scheme, not a transport model
- GEM is formulated for all parameters, but lacks trapped electrons
 physics is found to stay in EM/NL ITG plus MHD regime anyway
- model is AUG-sized, profiles for q, n_e , and T given with LCFS values fixed
- time traces and profiles at several times • sweep: P = 1 MW ramped after $t = 1000\tau_{GB}$ to 20 MW at $t = 20 \times 10^3$
- GEM: B Scott Phys Plasmas 12 (2005) 102307 and PPCF 48 (2006) B277

power sweep to 20 MW

Two Regimes of Edge Pedestal Width Limitation

it is possible that new nonlinear physics enters to additionally limit the ITER pedestal

Edge/Pedestal – several physical processes

- we didn't cover them all, just the basics present in any reasonable model
 energetic coupling between ExB and thermal energy defines the dynamics
 not only turbulence, but also ELMs (which saturate on turbulence they generate)
 not only that but also flow energetics, coupling to resistivity through currents
 not only that but also equilibrium relaxation which involves diamagnetic compression
- gyrokinetic study of neoclassical flows is very relevant
 remember: neoclassical *process*, not "neoclassical theory"
- several external processes which may turn out to be decisive
 coupling across the LCFS (separatrix) to the SOL
 sources, *e.g.*, penetration of neutrals into the edge
 turbulence/MHD energy avalanching down from the core
- despite PR claims, no reasonable L-H transition model exists (process not known)

lots of opportunity for new people to make a mark think outside the box, stay grounded but independent you don't have to follow self-styled gurus